
Toward a Natural-Language Interface in
Ontologies for Disambiguation

Alejandro Soĺıs-Sánchez1, Pablo Barraza Cornejo1,
Juan Acosta-Guadarrama1,2, Juan Ferret2

1 Universidad Autónoma de Ciudad Juárez,
Mexico

2 Instituto de Sistemas Filosóficos,
USA

{al160509,al164006}@alumnos.uacj.mx, juan.acosta@uacj.mx

Abstract. With natural-language-interfaces-to-ontology (NLI2O) one
can query a specific domain’s data, stored into that particular con-
ceptual structure, coded into specialized languages such as Ontology
Web Language, OWL. To access such data, one requires complex query
languages, such as SPARQL. NLI2Os translate human-language queries
into SPARQL ones. In this work, we describe the architecture of an
NLI2O. It receives a spoken question from an Android device. The spoken
query becomes text and goes to a Java Server Page (JSP). The core of
our interface runs on a JSP server, which receives the user’s text query.
It transforms it into a SPARQL query, later used to access, from the
ontology to query, the information requested by the user. The interface
uses several technologies to achieve that. Those are known as lemmati-
zation, part-of-speech tagging, and tokenization. It also uses knowledge
inference from the ontology of interest. It also uses clarification dialogues
for disambiguation to answer user questions and revise the query. Besides
that, some experiments suggest further studies like the disambiguation
of an original text.

Keywords: Natural language interfaces to ontologies, disambiguation,
SPARQL, OWL, semantic web.

1 Introduction

The Semantic Web is an extension of the current Web [2], where information
maps to a well-defined meaning that can be understood both by computers
and humans. The architecture of the Semantic Web that was established by
Tim Berners-Lee makes use of ontologies as one of its principal components. An
ontology is an explicit specification of conceptualization.

It allows us to understand the structure of knowledge better since it shows
concepts and the relationships that exist between them [11]. Natural language3

3 By natural language, we mean what people speak, such as English or any other.

1227

ISSN 1870-4069

Research in Computing Science 149(8), 2020pp. 1227–1241



interfaces (NLI) to ontologies translate a Natural Language query into a formal
query language, employed to retrieve the knowledge expressed in one of the
knowledge representation languages [7].

In the Semantic Web, ontologies store information and represent it through
the Web Ontology Language, OWL4, considered an extension of the Resource
Description Framework RDF language [18]. Consulting knowledge stored in an
ontology requires advanced skills for such purpose; an example is SPARQL
(Protocol and RDF Query Language [20]) [14]. For this reason, interfaces that
receive a query in natural language and transform it into a SPARQL query are
necessary, with which they extract information users request.

The Semantic Web needs interfaces to query ontologies in a language closer
to humans’. That facilitates interaction with sites or applications based on its
architecture. In this work, we propose an architecture for an interface which,
through queries in natural language, allows searching for information stored in
an ontology, by using a mobile device for its operation. It is also capable of
solving some kind of ambiguities through a simple clarification dialog, which is
a promising feature to process non-monotonic languages in future works. The
structure of this paper is the following. In Section 2, we add a description
of related existing proposals; in Section 3, we describe our project; Section 4
describes the implementation and Section 5 the conclusions.

2 Related Works

There are different architectures proposed for the implementation of natural-
language-interfaces-to-ontologies, NLI2O; they use different techniques of natu-
ral language processing (NLP) and formal query languages. This current work
revisits and extends a preliminary version that appeared in [22], and we include
further findings and software as a foundation of our claims5. In this section,
we describe the architecture of some NLI2Os like FREyA [9], Gingseng [3],
QuestIO [23], ORAKEL [4], and AquaLog [16], [22].

2.1 FREyA

FREyA (Feedback Refinement and Extended Vocabulary Aggregation) “is an
NLI for querying ontologies which combines usability enhancement methods
such as feedback and clarification dialogs,” to improve recall and precision [10].
FREyA uses the knowledge available in the ontology to identify the terms
found in the query, called Ontology Concepts—OC. If they are ambiguous,
FREyA generates a clarification dialog in which the user chooses one of several
alternatives. In the clarification dialog, the user selects an option that is stored
and used to train the system. Starting from the OC, FREyA generates a set of
triplets that converts to SPARQL queries to find the answer in the ontology. To

4 Refer to https://www.w3.org/TR/owl-features/.
5 Further examples and software are available at http://k-lab.uacj.mx/NLI2O-20/.

1228

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069

https://www.w3.org/TR/owl-features/
http://k-lab.uacj.mx/NLI2O-20/


show the results to the user, it first identifies the type of response [9]. Then, it
does a syntactic analysis and a search in the ontology to determine the emphasis
of the question, for each answer type. A focus is a word or sequence of words
that define a query and disambiguate it, showing what it is looking for [8]. The
presentation of FREyA results includes a graph for visualization.

2.2 Ginseng

Ginseng (Guided Input Natural Language Search Engine) is another NLI based
on a grammar of queries that extends dynamically through the structure of an
ontology to guide users in the formulation of questions in a language similar to
English. Based on the grammar, Ginseng translates queries to SPARQL, which
allows its execution [3]. It provides query access to any OWL knowledge base.
It guides the user to formulate questions, so there is no need to interpret them
(logically o syntactically) and does not use any predefined vocabulary. Ginseng
only knows the words defined by the currently considered ontologies, and the
user has to follow it [3]. That can limit the possibilities of the user in general
but ensures that all queries can get answered [3].

Ginseng’s architecture consists of three parts: a multilevel grammar, an in-
cremental parser, and an access layer to the ontology. The multilevel grammar
consists of a static component that specifies the structures of generally possi-
ble query sentences and a dynamic one generated from the utilized ontologies.
The static grammatical rules provide the structures and basic phrases for the
questions in English. Each ontology loaded onto Ginseng creates the dynamic
grammatical rules, and it uses them to extend the part of static syntax [3].
The incremental parser first uses the whole grammar to provide alternatives to
the user while inputting the queries, and secondly to store information about
how to build SPARQL queries. Finally, they use the Jena framework for the
access layer to the ontologies. When the query execution becomes completed,
Ginseng shows the generated SPARQL query and the results for the user [3].
The principal characteristic of Ginseng is that, unlike FREyA, queries that the
user makes get controlled by a grammar based on the knowledge stored in the
ontology. That gives rise to one of its advantages and equally its disadvantage
since the grammar gives it control over what the user writes, and therefore, it
avoids invalid questions, but at the same time limits the queries the user can
make.

2.3 QuestIO System

QuestIO (Question-Based Interface to Ontologies) is an NLI to access structured
information. It is domain independent and easy to use without training [23].
It is an open domain (or customizable to new ones with minimal cost), with
undefined vocabulary; that is, it is derived automatically from the existing data
in the knowledge base [23]. The system works by converting natural language
queries to formal SeRQL (Sesame Rdf Query Language, pronounced ”circle”)
questions [1], though other query languages can become used.

1229

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069



The QuestIO working process begins by processing the domain ontology, au-
tomatically creating a lexical dictionary from the obtained knowledge. From the
ontology, the dictionary is capable of identifying mentions of classes, properties,
instances, and property values associated with cases [23].

When QuestIO receives a query, the system does the following:

1. Make a linguistic analysis that consists of a morphological analysis of the
text by a tokenizer and tagging tool.

2. Execute the ontological dictionary created at the system’s start over the
query’s text. That creates annotations for all the mentions that the dictio-
nary could identify—classes, properties, instances, and property values of
data types.

3. Initiate an iterative transformation process to convert input text into a
formal query. First, it separates the input text into tokens, determining each
one’s part of the discourse and adding annotations with its morphological
route. Then, it tries to identify mentions of the ontology resources on the
input text for generating a formal SeRQL query.

4. Finally, execute the query on the knowledge base and display the results.

QuestIO is an NLI that, unlike FREyA and Ginseng, uses SeRQL query
language, which can be a disadvantage, since the official standard for consulting
ontologies in the Semantic Web is SPARQL. Another problem is that it depends
on a well-designed ontology for its operation, which generally requires a domain
specialist for the ontology’s design, making it less accessible to unskilled users.

2.4 ORAKEL

ORAKEL is an NLI to a knowledge base that transforms questions into a logical
form [4] since it uses the F-logic language for representation of knowledge [15].
It receives a query in natural language as input, which gets converted to a first-
order logic formula. Then, the logic formula gets transformed into the specific
query language, which can be SPARQL or the F(rame)-Logic, F-logic, query
language [5]. ORAKEL has the following main components.

1. Domain lexicon and general lexicon: a domain specialist creates both.
2. A knowledge base is composed of the domain ontology.
3. FrammeMapper: is a domain specialist that needs to know the underlying

knowledge base.
4. Query Interpreter: builds a query formulated by the user to a logical form

concerning domain predicates.
5. Query Converter: implemented in Prolog. It receives queries in logical form

and translates them to knowledge base language (F-logic).
6. Answer generation.

Unlike other NLI shown in this work, ORAKEL is compatible with F-logic
language for knowledge representation. Its main advantage is that it was designed
to port NLI between domains efficiently. The disadvantage is that it requires a
domain specialist for the lexicon generation.

1230

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069



2.5 AquaLog

Aqualog [16] is a portable question-answer system that takes as input queries
expressed in natural language and an ontology and returns answers extracted
from semantic markup compatible with the available ontology. Aqualog archi-
tecture can get characterized as a cascade model in which a natural language
query gets translated into a set of intermediate representations based on triplets.
Such triplets shall be compatible with the ontology. The triplet model Aqualog
uses is of the form subject-predicate-object [16]. The main Aqualog modules are
the linguistic component and the similarity relationship service.

The purpose of the linguistic component is to convert the natural language
query to a query in triplets. Aqualog uses the GATE [6] infrastructure and re-
sources to analyze the question as part of a linguistic component. GATE returns a
set of syntactical annotations associated with the input query. These annotations
include information about sentences, tokens, nouns, and verbs. Aqualog extends
the set of annotations returned by GATE, identifying terms, relationships, ques-
tion indicators (what/who/when/. . . ), and patterns or types of questions.

Aqualog presents a solution that combines different strategies to give sense
to a natural language query concerning the universe of discourse covered by
the ontology. Using the GATE framework gives it the ability to improve the
processing of natural language queries.

Previously analyzed NLI use ontologies to store knowledge, coded in XML
files, and extracted through a query language. Except for QuestIO (which uses
SeRQL), other interfaces use SPARQL, recommended by the W3C for the Se-
mantic Web6.

3 Proposed Architecture

The currently developed interface receives a natural language query made by
the users in English, translates it to SPARQL [20], and through it, extracts
the required information from the user’s ontology. Its architecture has two main
modules: a) knowledge-generating module (KGM) and b) interface module (IM).
The KGM is in charge of generating the knowledge the IM needs to answer
the users’ natural language queries. In Section 3.1, we describe the KGM, and
Section 3.2 describes the IM. In Figure 1, we present the proposed interface’s
general architecture.

3.1 Knowledge-generating Module

For the IM to be able to answer natural language queries, It is necessary to
provide it of knowledge about the structure of the ontology the user wants to
query and about the conversational linguistic domain. To facilitate portability
to different user ontologies, the KGM is in charge of generating this knowledge,
trying to minimize user intervention while configuring the IM.

6 Refer to https://www.w3.org/blog/SW/2008/01/15/sparql is a recommendation/

1231

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069



Fig. 1. General Architecture of Proposed Interface.

Firstly, the user indicates to the KGM the ontology they wish to query.
Then, the KGM accesses the ontology and analyzes its structure; that is, it
identifies the classes, object and data, and the way these elements are related.
For this purpose, we used SPARQL query language, coded in OWL [18]. Through
SPARQL queries, it can identify the features that make up the ontology’s struc-
ture and access the stored information, generally modeled individually, that is,
as instances of the ontology’s classes.

As the next step, the identified elements get modeled semantically by using
a semantic representation defined a priori for this purpose. The semantic repre-
sentation was designed firstly in the software Protégé [25]. Then, to integrate the
structure of this semantic representation in the KGM, we used the framework
Apache Jena7, which allows managing ontologies from the Java programming
language, in which we designed our proposal.

Next, each of the modeled elements names get associated with synonyms and
with words that share the same lemma. That gets done to provide the IM with
linguistic knowledge about the domain of the user’s ontology. The generated
vocabulary becomes part of the semantic model.

Lastly, after generating the semantic model, the KGM stores it in an ontology,
created dynamically. This ontology contains the knowledge the IM needs to
answer natural language queries formulated by users. In Figure 2, we present
the architecture corresponding to KGM, and in Figure 3, we show a fragment of
the generated semantic model.

We generated the presented fragment from the ontology Geography.owl8,
used in the evaluation of the FREyA interface by Damljanovic [9]. At the same
time, we generated this ontology from the deductive database made by Raymond
J. Mooney [24], which contained information about the geography of the United

7 Refer to https://jena.apache.org/about_jena/about.html.
8 Refer to https://github.com/danicadamljanovic/freya.

1232

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069

https://jena.apache.org/about_jena/about.html
https://github.com/danicadamljanovic/freya


States and got distributed as example data in Turbo Prolog 2.0. In Figure 4, we
show the structure of the ontology Geography.owl.

Fig. 2. Knowledge-Generating Module Architecture.

Fig. 3. Generated semantic model fragment.

The classes CClass, CObjectProperty, CDatatypeProperty, and CToken, make
up the semantic representation of Figure 3, besides the object properties has-
DatatypeProperty, mappingObject, and others.

1233

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069



Fig. 4. Ontology structure for Geography.owl.

Figure 3 models the classes State, Lake, City, Capital, Lake, LoPoint, Moun-
tain, HiPoint, River, and Road, shown in Figure 4 as individuals of the CClass
class. Figure 3 models object properties Borders, isCityOf, hasCity, isCapitalOf,
hasCapital, isLakeOf, hasLake, isLowestPointOf, hasLowestPoint, isMountainOf,
hasMountain, isHighestPointOf, hasHighestPoint, runsThrough, hasRiver, pass-
esThrough and hasRoad, shown in Figure 4, as individuals of the CObjectProp-
erty class. Figure 3 models data properties statePopulation, stateArea, abbrevi-
ation, statePopDensity, cityPopulation, lakeArea, loElevation, height, hiEleva-
tion, length and number, shown in Figure 4, as class individuals CDatatypeProp-
erty.

The class CToken is useful for modeling the interface vocabulary. Considering
Figure 3, if the user introduced the word “population,” IM would know that they
are possibly referring to individuals STATE (CClass), STATEPOPULATION
(CObjectProperty), or STATEPOPDENSITY (CObjectProperty). In this way,
the IM uses the knowledge generated to interpret user’s queries and generating
the SPARQL query.

3.2 Interface Module

The Interface Module (IM) aims at translating the user’s natural language query
to a SPARQL query, with which it extracts from the user’s ontology the requested
information. Its operation is in Figure 5. The first step done by IM to generate
the SPARQL query is to process the natural language of the user’s query.

That phase consists of separating the user’s query into a set of words, or
isolated tokens. Afterward, it tags these tokens according to their grammatical
function in the user’s query. Lastly, it obtains the lemma for each one of the

1234

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069



Fig. 5. Interface module operation.

tokens. We achieve this phase by using Freeling [19], a suite of tools for pro-
cessing natural language which supports different languages, including English
and Spanish. Supposing the user introduces the query “What is the population
density of Wyoming?”, the result of this phase is in Table 1, as in [22].

Table 1. Example of natural language processing.

Token Lemma PoS Meaning PoS

What what WP
type= interrogative
pos= verb

is be VBZ
pos= pronoun
vform= personal
person= 3

the the DT pos= determiner

population population NN
pos= noun
type= common
num= singular

density density NN
pos= noun
type= common
num= singular

of of IN pos=preposition

Wyoming Wyoming NP
pos= noun
type= proper

? ? Fit
pos= punctuation
type= question mark
punctenclose= close

The second step achieved by the IM is a semantic treatment. In this phase,
each token, tagged grammatically as a noun or adjective, becomes analyzed.
Analysis means to identify if any token maps to a concept, namely, to an
individual of the class CToken from the ontology generated by the KGM (as
it was in the world population example at the end of Section 3.1). That gets
done through an exact matching of characters. Through the model presented
in Figure 3, the IM identifies if the mapping refers to a class, text property,
or data property. In case any of these tokens did not map to some element

1235

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069



in the ontology, it searches in the user’s ontologies to identify if it is a value.
In the previous example, Wyoming is a value, since the IM identifies that an
instantiated individual from the class State. Correctly identifying the mappings
and values is essential to generate the SPARQL query. In Table 2, we present
the result of this step.

Table 2. Example of identification of mappings and values.

Token Lemma PoS Meaning PoS

What what WP

is be VBZ

the the DT

population population NN

Token=http://www.uacj nlp.com/schema/nlp. OWL#population
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp. OWL#STATEPOPULATION

Token=http://www.uacj nlp.com/schema/nlp. OWL#population
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp. OWL#STATEPOPDENSITY

Token=http://www.uacj nlp.com/schema/nlp. OWL#citypopulation
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp. OWL#CITYPOPULATION

density density NN

Token=http://www.uacj nlp.com/schema/nlp. OWL#density
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp. OWL#STATEPOPDENSITY

Token=http://www.uacj nlp.com/schema/nlp. OWL#population
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp. OWL#in order toTo

of of IN

Wyoming Wyoming NP

Individual=http://www.mooney.net/ geo#wyoming
Class=http://www.mooney.net/geo#State
Label=wyoming@en

Individual=http://www.mooney.net /geo#wyomingMi
Class=http://www.mooney.net/geo#City
Label=wyoming@en

? ? Fit

Subsequently, it aims to identify if there is some relationship between any
of the tokens. It determines that if, between its mapping, there exists some
in common, besides following some a priori defined rules. In case of being
affirmative, it combines both tokens into a composite one, keeping only the
matching or related mappings and discarding the rest of them. The objective is
to simplify the generation process of the SPARQL query. As we see in Table 2,
the tokens population and density have in common the STATEPOPDENSITY
mapping, which is why the IM combines them into a single token.

Then, the IM processes the identified values. If the latter belong to more than
one class, it could cause an ambiguity issue. In such a case, Wyoming belongs
to two of them, State (wyoming) and City (wyoming), so it tries to solve the
ambiguity identifying the classes that match those of the rest of the queries’
elements.

Since the IM determined, on the grounds of Figure 3, that STATEPOPDEN-
SITY is a data property that belongs to STATE, it discards the class City. In
the case the IM cannot solve the ambiguity, it shows a clarification dialog to
the user so they can decide on it. In Table 3, we present the results of such a
semantic treatment phase.

The third step is to generate the SPARQL query with the identified elements
after the semantic treatment phase, shown in Table 3, and to use such query
to extract, from the user’s ontology, the requested information. To generate the

1236

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069



Table 3. Example of the semantic treatment phase.

Token Lemma PoS Meaning PoS

What what WP

is be VBZ

the the DT

population
density

population
density

NN

Token=http://www.uacj nlp.com/schema/nlp. OWL#population
Class=http://www.uacj nlp.com/schema/nlp. OWL#CDatatypeProperty
Object=http://www.uacj nlp.com/schema/nlp.
OWL#STATEPOPDENSITY

of of IN

Wyoming Wyoming NP

Individual=http://www.mooney.net/ geo#wyoming
Class=http://www.mooney.net/geo#State
Label=wyoming@en

? ? Fit

SPARQL query, it follows a series of a priori defined rules. For example, based
on Figure 3 and Table 3, the IM identified that STATEPOPDENSITY is a data
property related to the STATE class. Such elements are defined in the user’s
ontology by the IM as <http://www.mooney.net/geo#statePopDensity> and
as <http://www.mooney.net/geo#State>. Also, Wyoming is an individual of
the class State. For that reason, the IM generated the following SPARQL query,
where the variable that forms part of the Select clause comes up out of the
combined token population density, which becomes transformed into ?popula-
tion density. In Figure 6, we show results given by the IM using the generated
SPARQL query.

Se l e c t ? popu l a t i on dens i t y
Where {

<http ://www.mooney . net /geo#statePopDensity>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http ://www.w3 . org /2002/07/ owl#DatatypeProperty >.
<http ://www.mooney . net /geo#wyoming>
<http ://www.mooney . net /geo#statePopDensity>
? popu l a t i on dens i t y .

<http ://www.mooney . net /geo#wyoming>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http ://www.mooney . net /geo#State>

}

Fig. 6. Result of the query “What is the population density of Wyoming” using the
ontology Geography.owl.

4 Implementation

In this section, we describe the implementation of the NLI proposed in this
paper.

We describe the software components and hardware devices where they lo-
cate. The NLI is based on a client-server architecture, uses an Android app as

1237

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069



a graphical interface and an application server where the query processing gets
done. The server works through Java Server Pages (JSP) [12] as a technology
for its implementation, which is why we use Apache Tomcat [26], a Java-based
application container.

The display diagram of Figure 7 shows the software components and hard-
ware devices used. The system implements the following software components:
An Android application, an event controller for inter-component interaction,
a knowledge base, a natural language processing component, and another to
generate and execute SPARQL queries on the knowledge base.

Fig. 7. Display diagram.

The general process for every input query is according to the following steps:

1. The Android app receives the query in a voice phrase as input, converts it
into text, and sends it to the controller for processing.

2. The controller receives the query and sends it to the NL processor.
3. The NL processor receives the text query, and out of it, it obtains the tokens,

grammatical tags, and lemmas. Finally, it sends the controller a set of all of
them.

4. Once the controller receives the set of tokens, tags, and lemmas, it sends it
to the knowledge module.

5. The knowledge module is in charge of generating SPARQL queries and
executing them on the ontology to get a response. Lastly, it sends the
response back to the controller.

6. The controller sends a response to the Android application to show it to the
user.

1238

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069



For the implementation of each component, we used several development
tools. We implemented the Android app with the Android Studio IDE, using
native libraries to convert voice queries to text. One can run it in devices that
use Android as an operating system.

The controller is JSP technology [13] implementation. Receives and makes
requests to other components to manage all of the system’s processes, from
receiving the query to sending the answer to the Android application.

The NL processor is implemented in the Java language.After reviewing sev-
eral natural language processing tools like the open-source library Freeling [19],
the library Apache OpenNLP9, and the Stanford CoreNLP [17] tools, we chose
Freeling to implement this component since, unlike the others, it has better
support for the English and Spanish languages.

The knowledge base is in ontology form, and in OWL [18] and RDF [21] files,
to access it, we use the SPARQL query language. We implemented the knowledge
module using the Java programming language and Apache Jena, which is a Java
framework for querying knowledge bases stored in RDF and OWL structures
and allows managing the ontology at runtime.

The NLI allows selecting the previously created ontology it is desired to
query. Using the framework Jena, the NLI accesses the ontology and analyzes
its structure to reply to the user’s natural language queries subsequently.

5 Conclusions

With the upcoming of Semantic Web, the use of ontologies has taken importance,
since they intended to use as a knowledge representation medium to facilitate
the interoperability of information on the Web. The NLI2O are adequate tools
to access knowledge stored in the ontologies. Its development could facilitate
user resource localization, communication between informatics applications, in-
formation lookup, disambiguation, and other activities on the Web.

In this work, we propose the architecture of an NLI that uses knowledge
bases on ontologies, which receives voice queries from an Android device. Then,
it converts them to text, applies natural-language and knowledge-representation-
processing techniques to generate the corresponding SPARQL queries. Finally,
it extracts information from the ontology.

Even though the modeling and semantic processing by the NLI has allowed
answering queries formulated in natural language by users, some areas of oppor-
tunity were detected.

As future works, we proposed improving the knowledge representation sys-
tem, as well as the NLI semantic processing and F-logic. We also suggest up-
grading the natural language processing, so the NLI is capable of answering
queries that make comparisons, negotiations, automatic disambiguation, dates,
and numbers. Subsequently, we propose evaluating the performance of the NLI
against FREyA using the ontology Geography.owl and its respective corpus of
queries called Geoquery 250 and Geoquery 880.

9 Refer to https://opennlp.apache.org.

1239

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069

https://opennlp.apache.org


As future long-term works, we propose addressing complex problems related
to natural language features. Some of them are anaphora, and intersentential
ellipsis, to mention a few. The anaphora is when we refer to a previously men-
tioned entity, and its resolution is essential to answer questions that relate to
the same object in different forms. The ellipsis occurs when we omit one or more
words in a sentence and are understood by having been mentioned earlier.

References

1. Aduna, J.B., Aduna, A.K.: SeRQL: A second generation RDF query language.
SWAD-Europe Workshop on Semantic Web Storage and Retrieval (2003)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American
284(5), 34–43 (May 2001)

3. Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A guided input
natural language search engine for querying ontologies. Department of Informatics,
University of Zurich, Switzerland (2006)

4. Cimiano, P.: ORAKEL: A natural language interface to an F-Logic knowledge base.
In: Meziane, F., Métais, E. (eds.) Natural Language Processing and Information
Systems. pp. 401–406. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

5. Cimiano, P., Haase, P., Heizmann, J.: Porting natural language interfaces between
domains: An experimental user study with the ORAKEL system. International
Conference on Intelligent User Interfaces, Proceedings IUI (2008)

6. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: An architecture
for development of robust HLT applications. In: 40th Annual Meeting on ACL. pp.
168–175. ACL ’02, Association for Computational Linguistics, USA (2002)

7. Damljanovic, D.: Natural Language Interfaces to Conceptual Models. Ph.D. thesis,
The University of Sheffield (2011), http://etheses.whiterose.ac.uk/1630/2/

Damljanovic{%}2C{_}Danica.pdf
8. Damljanovic, D., Agatonovic, M., Cunningham, H.: Identification of the question

focus: Combining syntactic analysis and ontology-based lookup through the user
interaction. 7th LREC (May 2010)

9. Damljanovic, D., Agatonovic, M., Cunningham, H.: Natural language interfaces
to ontologies: Combining syntactic analysis and ontology-based lookup through
the user interaction. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) The Semantic Web: Research
and Applications. pp. 106–120. Springer, Berlin, Heidelberg (2010)

10. Damljanovic, D., Agatonovic, M., Cunningham, H.: FREyA: An interactive way
of querying linked data using natural language. In: Garćıa-Castro, R., Fensel, D.,
Antoniou, G. (eds.) The Semantic Web: ESWC 2011 Workshops. pp. 125–138.
Springer, Berlin, Heidelberg (2012)

11. Guarino, N., Oberle, D., Staab, S.: What is an Ontology? In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies, pp. 0–17 (2009)

12. Hunt, J.: Java Server Pages, pp. 361–370. Springer, London (2002)
13. Jayson Falkner, K.W.J.: Servlets and JavaServer PagesTM: The J2EETM Technol-

ogy Web Tier. Addison-Wesley Professional (2003)
14. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the

semantic web for casual end-users? In: Aberer, K., Choi, K.S., Noy, N., Allemang,
D., Lee, K.I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R.,
Schreiber, G., Cudré-Mauroux, P. (eds.) The Semantic Web. pp. 281–294. Springer,
Berlin, Heidelberg (2007)

1240

Alejandro Solís-Sánchez, Pablo Barraza Cornejo, Juan Acosta-Guadarrama, Juan Ferret

Research in Computing Science 149(8), 2020 ISSN 1870-4069

http://etheses.whiterose.ac.uk/1630/2/Damljanovic{%}2C{_}Danica.pdf
http://etheses.whiterose.ac.uk/1630/2/Damljanovic{%}2C{_}Danica.pdf


15. Kifer, M., Lausen, G.: F-Logic: A higher-order language for reasoning about
objects, inheritance, and scheme. In: Proceedings of the 1989 ACM SIGMOD.
pp. 134–146. ’89, ACM, New York, NY, USA (1989)

16. Lopez, V., Pasin, M., Motta, E.: Aqualog: An ontology-portable question answering
system for the Semantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) The Seman-
tic Web: Research and Applications. pp. 546–562. Springer, Berlin, Heidelberg
(2005)

17. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky,
D.: The Stanford CoreNLP natural language processing toolkit. In: ACL System
Demonstrations. pp. 55–60 (2014)

18. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview.
World Wide Web Consortium (February 2004)

19. Padró, L.: Analizadores multilingües en FreeLing. Linguamatica 3(2), 13–20 (De-
cember 2011)

20. Prud’hommeaux, E., Seaborne, A., W3C, Laboratories, H.P., Bristol: SPARQL
Query Language for RDF. World Wide Web Consortium (January 2008)

21. Schreiber, G., Amsterdam, V.U., Raimond, I., BBC: RDF 1.1 Primer. World Wide
Web Consortium (February 2014), https://www.w3.org/TR/rdf11-primer/

22. Soĺıs, A., Florencia, R., Acosta, J., López, F.: Interfaz de lenguaje natural para
deducción de información almacenada en ontoloǵıas . Research in Computing
Science 147(6), 189–205 (2019)

23. Tablan, V., Damljanovic, D., Bontcheva, K.: A Natural Language Query Interface
to Structured Information. In: The Semantic Web: Research and Applications: 5th
ESWC, Tenerife, Canary Islands, Spain, June 1–5. Springer (2008)

24. Tang, L.R., Mooney, R.J.: Using Multiple Clause Constructors in Inductive Logic
Programming for Semantic Parsing, pp. 466–477. Machine Learning: ECML 2001,
Springer Berlin Heidelberg (2001)

25. Tudorache, T., Nyulas, C., Noy, N.F., Musen, M.A.: Webprotégé: A collaborative
ontology editor and knowledge acquisition tool for the web. Semantic Web 4(1),
89–99 (2011), 10.3233/sw-2012-0057

26. Vukotic, A., Goodwill, J.: Introduction to Apache Tomcat 7, pp. 1–15. Apress,
Berkeley, CA (2011)

1241

Toward a Natural-Language Interface in Ontologies for Disambiguation

Research in Computing Science 149(8), 2020ISSN 1870-4069

https://www.w3.org/TR/rdf11-primer/
10.3233/sw-2012-0057

	Toward a Natural-Language Interface in Ontologies for Disambiguation

